Highly Substituted 2,3-Dihydroisoxazoles by Et₃N-Catalyzed Tandem Reaction of Electron-Deficient 1,3-Conjugated Enynes with Hydroxylamines

Xiuzhao Yu, Bo Du, Kai Wang, and Junliang Zhang*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China

jlzhang@chem.ecnu.edu.cn

Received February 26, 2010

LETTERS 2010 Vol. 12, No. 8 ¹⁸⁷⁶-**¹⁸⁷⁹**

ORGANIC

ABSTRACT

An Et3N-catalyzed tandem reaction of electron-deficient 1,3-conjugated enynes with hydroxylamines was developed which provided rapid, metal-free, and regioselective access to highly substituted multifunctionalized 2,3-dihydroisoxazoles under mild conditions. The reactions of 3-(2-arylethynyl)-4*H***-chromen-4-ones with hydroxylamines afford -amino enones under the same reaction conditions.**

2,3-Dihydroisoxazoles represent a class of heterocycles that may be employed as useful building blocks for organic synthesis¹ since the N-O bond can be easily cleaved under mild reducing conditions leading to $1,3$ -amino alcohols^{2,3} or 1,3-amino ketones.^{2,4} They are also found in many

^{(1) (}a) Freeman, J. P. *Chem. Re*V*.* **¹⁹⁸³**, *⁸³*, 241. (b) Zhao, B.-X.; Yu, Y.; Eguchi, S. *Tetrahedron* **1996**, *52*, 12049. (c) Padwa, A.; Wong, G. S. K. *J. Org. Chem.* **1986**, *51*, 3125. (d) Padwa, A.; Chiachio, U.; Kline, D. N.; Perumattan, J. *J. Org. Chem.* **1988**, *53*, 2238. (e) Padwa, A.; Norman, B. H.; Perumattam, J. *Tetrahedron Lett.* **1989**, *30*, 663. (f) Padwa, A.; Bullock, W. H.; Kline, D. N.; Perumattam, J. *J. Org. Chem.* **1989**, *54*, 2862. (g) Adachi, I.; Miyazaki, R.; Kano, H. *Chem. Pharm. Bull.* **1974**, *22*, 70. (h) Aurich, H. G.; Franzke, M.; Kesselheim, H. P.; Rohr, M. *Tetrahedron* **1992**, *48*, 669. (i) Lopez-Calle, E.; Keller, M.; Eberbach, W. *Eur. J. Org. Chem.* **²⁰⁰³**, 1438. (j) Friebolin, W.; Eberbach, W. *Hel*V*. Chim. Acta* **²⁰⁰¹**, *⁸⁴*, 3822. (k) Ishikawa, T.; Kudoh, T.; Yoshida, J.; Yasuhara, A.; Manabe, S.; Saito, S. *Org. Lett.* **2002**, *4*, 1907. (l) Alcaide, B.; Almendros, P.; Alonso, J. M.; Aly, M. F.; Pardo, C.; Sa´ez, E.; Torres, M. R. *J. Org. Chem.* **2002**, *67*, 7004. (m) Friebolin, W.; Eberbach, W. *Tetrahedron* **2001**, *57*, 4349. (n) Aschwanden, P.; Kværnø, L.; Geisser, R. W.; Kleinbeck, F.; Carreira, E. M. *Org. Lett.* **2005**, *7*, 5741. (o) Canterbury, D. P.; Herrick, I. R.; Um, J.; Houk, K. N.; Frontier, A. J. *Tetrahedron* **2009**, *65*, 3165. (p) Canterbury, D. P.; Frontier, A. J.; Um, J. M.; Cheong, P. H.-Y.; Goldfeld, D. A.; Huhn, R. A.; Houk, K. N. *Org. Lett.* **2008**, *10*, 4597. For total synthesis of natural product, see: (q) Bitar, A. Y.; Frontier, A. J. *Org. Lett.* **2009**, *11*, 49.

⁽²⁾ For selected examples to prepare β -amino alcohols, see: (a) Pilli, R. A.; Russowsky, D. *J. Chem. Soc., Chem. Commun.* **1987**, 1053. (b) Pilli, R. A.; Russowsky, D.; Dias, L. C. *J. Chem. Soc., Perkin Trans. 1* **1990**, 1213. (c) Barluenga, J.; Aguilar, E.; Fustero, S.; Olano, B.; Viado, A. L. *J. Org. Chem.* **1992**, *57*, 1219. (d) Keck, G. E.; Truong, A. P. *Org. Lett.* **2002**, *4*, 3131.

⁽³⁾ β -Amino alcohols are also commonly used as chiral ligands; see: (a) *Comprehensive Asymmetric Catalysis I-III*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, Heidelberg, 1999. (b) *Catalytic Asymmetric Synthesis*, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000.

⁽⁴⁾ For general methods to prepare β -amino ketones, see: (a) Davies, S. G.; McCarthy, T. D. *Synlett* **1995**, 700. (b) Taylor, M. S.; Zalatan, D. N.; Lerchner, A. M.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2005**, *127*, 1313. (c) Kantam, M. L.; Neeraja, V.; Kavita, B.; Neelima, B.; Hussain, S. *Ad*V*. Synth. Catal.* **2005**, *347*, 763. (d) Dondoni, A.; Marra, A.; Boscarato, A. *Chem.* $-Eur.$ *J.* **1999**, *5*, 3562. (e) Kobayashi, S.; Ishitani, H. *Chem. Rev.* **1999**, *99*, 1069. (f) Arend, M.; Westermann, B.; Risch, N. *Angew. Chem., Int. Ed.* **¹⁹⁹⁸**, *³⁷*, 1045. (g) Hart, D. J.; Ha, D. C. *Chem. Re*V*.* **¹⁹⁸⁹**, *⁸⁹*, 1447. (h) Jafari, A. A.; Moradgholi, F.; Tamaddon, F. *Eur. J. Org. Chem.* **2009**, 1249.

bioactive molecules and pharmaceuticals.⁵ Among many methods developed in past years, 1,3-dipolar cycloaddition reactions between nitrones and alkynes or metal acetylides under the catalysis of transition metals or Lewis acids are the most common synthetic methods for the construction of 2,3-dihydroisoxazoles.6 However, metal-catalyzed 1,3-dipolar cycloadditions often furnish regioisomeric mixtures of adducts, proceed in low yield, $6g^{-1}$ or have functional group tolerance.^{6a-c} Herein, we report a base-catalyzed tandem reaction⁷ of electron-deficient 1,3-conjugated enynes with substituted hydroxylamines, providing a metal-free, efficient, and regioselective approach to highly substituted 2,3 dihydroisoxazoles.

Recently, our group⁸ and others⁹ have demonstrated that electron-deficient 1,3-conjugated enynes are readily available and attractive precursors for the construction of various acyclic and cyclic compounds. During these studies, we envisaged that 2,3-dihydroisoxazoles might be prepared from the corresponding electron-deficient 1,3-enynes and hydroxylamines by tandem inter- and intramolecular nucleophilic addition.

To test this hypothesis, enyne **1a** and *N*-benzylhydroxylamine **2a** were subjected to DMF at 40 °C in the presence of Et3N (20 mol %). Gratifyingly, the desired product **3aa** was obtained in 77% isolated yield after 4 h (Table 1, entry 1). Interestingly, the reaction gives 44% yield of **3aa** without any additional base, indicating that hydroxylamine itself can play the role of a base (Table 1, entry 2). Other organic and inorganic bases such as DBU, DABCO, DMAP, PhCO₂Na, and NaHCO₃ were next tested. In contrast with the previous inorganic bases such as DBU, DABCO, DMAP, PhCO₂Na,

(6) (a) Aschwanden, P.; Frantz, D. E.; Carreira, E. M. *Org. Lett.* **2000**, *2*, 2331. (b) Stoner, E. J.; Roden, B. A.; Chemburkar, S. *Tetrahedron Lett.* **1997**, *38*, 4981. (c) Fabio, M.; Ronzini, L.; Troisi, L. *Tetrahedron* **2008**, *64*, 4979. (d) *Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry. Toward Heterocycles and Natural Products*; Padwa, A., Pearson, W. H., Eds.; Wiley: New York, 2002. (e) Tufarillio, J. J. In *1,3-Dipolar Cycloaddition Chemistry*; Padwa, A. Ed.; Wiley: New York, 1984; Vol. 2. (f) Alcaide, B.; Almendros, P.; Alonso, J. M.; Aly, M. F.; Pardo, C.; Sáez, E.; Torres, M. R. *Org. Lett.* **2002**, 4, 1463. (g) González-Cruz, D.; Tejedor, D.; de Armas, P.; García-Tellado, F. *Chem.* $-Eur.$ J. 2007, 13, 4823. (h) González-Cruz, D.; Tejedor, D.; Armas, P.; Morales, E. Q.; García-Tellado, F. *Chem. Commun.* **2006**, 2798. (i) Benfatti, F.; Cardillo, G.; Contaldi, S.; Gentilucci, L.; Mosconi, E.; Tolomelli, A.; Juaristi, E.; Reyes-Rangel, G. *Tetrahedron* **2009**, *65*, 2478. (j) Cantagrel, F.; Pinet, S.; Gimbert, Y.; Chavant, P. Y. *Eur. J. Org. Chem.* **2005**, 2694. (k) Abbiati, G.; Arcadi, A.; Marinelli, F.; Rossi, E.; Verdecchia, M. *Eur. J. Org. Chem.* **2009**, 1027. (l) Canterbury, D. P.; Frontier, A. J.; Um, J. M.; Cheong, P. H.-Y.; Goldfeld, D. A.; Huhn, R. A.; Houk, K. N. *Org. Lett.* **2005**, *7*, 5147. (m) Debleds, O.; Dal Zotto, C.; Vrancken, E.; Campagne, J.-M.; Retailleau, P. *Ad*V*. Synth. Catal.* **2009**, *351*, 1991.

(7) For representative reviews on cascade or domino reactions, see: (a) Tietze, L. F. *Chem. Re*V*.* **¹⁹⁹⁶**, *⁹⁶*, 115. (b) Tietze, L. F.; Lieb, M. E. *Curr. Opin. Chem. Biol.* **1998**, *2*, 363. (c) Rodriguez, J. *Synlett* **1999**, 505. (d) Tietze, L. F.; Brasche, G.; Gericke, K. M. *Domino Reactions in Organic Synthesis*; Wiley-VCH: Weinheim, 2006. (e) Multicomponent reactions often involve domino process, see: *Multicomponent Reactions*; Zhu, J., Bienayme´, H., Eds.; Wiley-VCH: Weinheim, 2005.

(8) (a) Xiao, Y.; Zhang, J. *Angew. Chem., Int. Ed.* **2008**, 47, 1903. (b) Yu, X.; Ren, H.; Xiao, Y.; Zhang, J. *Chem.*—Eur. J. **2008**, 14, 8481. (c) Xiao, Y.; Zhang, J. *Chem. Commun.* **2009**, 3594. (d) Liu, F.; Zhang, J. *Angew. Chem., Int. Ed.* 2009, 48, 5505. (e) Liu, R.; Zhang, J. Chem.-Eur. *J.* **2009**, *15*, 9303. (f) Gao, H.; Zhao, X.; Yu, Y.; Zhang, J. *Chem.*-*Eur. J.* **2010**, *16*, 456. (g) Xiao, Y.; Zhang, J. *Chem. Commun* **2010**, *46*, 752.

(9) (a) Yao, T.; Zhang, X.; Larock, R. C. *J. Am. Chem. Soc.* **2004**, *126*, 11164. (b) Yao, T.; Zhang, X.; Larock, R. C. *J. Org. Chem.* **2005**, *70*, 7679. (c) Liu, Y. H.; Zhou, S. *Org. Lett.* **2005**, *7*, 4609. (d) Patil, N. T.; Wu, H.; Yamamoto, Y. *J. Org. Chem.* **2005**, *70*, 4531.

^{*a*} All reactions were carried out using **1a** (0.3 mmol) and **2a** (0.45 mmol) in the presence of base under N_2 atmosphere in solvent (2.5 mL) for $1-12$ h. b DBU = 1,8-diazabicyclo[5.4.0]undecen-7-ene. ^c 10 mol % of Et₃N. ^{*d*} DABCO = 1,4-diazabicyclo[2.2.2]octane. ^{*e*} DMAP = 4-dimethylaminopyridine. ^{*f*} Isolated yield.

result,^{8c} DBU here failed to give the desired product (Table 1, entry 3), while DABCO (entry 9) or DMAP (entry 10) catalyzed this reaction at ambient temperature, providing **3aa** in 80% and 66% yield, respectively. Both NaHCO₃ (entry 4) and $PhCO₂Na$ (entry 5) are less effective. Furthermore, the reaction temperature and catalyst loading were also examined (Table 1, entries $6-8$, 14). There is little solvent effect on this tandem reaction (Table 1, entries $11-14$). Finally, we were pleased to find that **3aa** could be isolated in 91% yield after stirring at 0 °C in DCE for 1.5 h with 20 mol % of Et_3N as catalyst (Table 1, entry 14, standard conditions).

With the optimized conditions in hand, we next examined the scope of this tandem reaction with various substituted electron-deficient 1,3-conjugated enynes **1** and various *N*substituted hydroxylamines (Scheme 1). Several points are noteworthy: (1) In general, highly substituted 2,3-dihydroisoxazoles can be prepared in moderate to excellent yields under standard conditions from the corresponding electrondeficient conjugated enynes and hydroxylamines. The yield of **3ra** is low because of the unstable substrate **1r**. (2) Various electron-withdrawing groups (EWG) such as ketone (**3ba**-**na**), aldehyde (**3ra**), ester (**3qa** and **3uc**), and amide (**3oa**) can be effectively introduced to the products. (3) The substituent on the alkene moiety $(R¹)$ can be an aryl (**3aa**-**3ad**), alkyl (**3ea**), styryl (**3la**), or ester (**3qa**) group. (4) The substituent (R^2) on the alkyne moiety can also be an aryl or alkyl (**3ea**) group. (5) Besides **2a**, we also tested other substituted or unsubstituted hydroxylamines such as *^N*-(naphthalen-1-ylmethyl) hydroxylamine (**2b**), MeNH(OH)·

^{(5) (}a) Habeeb, A. G.; Praveen Rao, P. N.; Knaus, E. E. *J. Med. Chem.* **2001**, *44*, 2921. (b) FraleyM. E. Garbaccio, R. M.; Hartman, G. D. Patent WO 2006023440, 2006.

^a MeNH(OH)[·]HCl or HONH₂[·]HCl and 170 mol % of Et₃N were used for **3ac**, **3uc**, **3jc**, and **3ad**. *^b* The designation **3aa** for the product indicates that the reactants used were **1a** and **2a**, respectively.

HCl (**2c**), HONH2·HCl (**2d**), and the *^N*-phenylhydroxylamine (**2e**). (6) Due to its weak nucleophilicity, only **2e** cannot react with electron-deficient 1,3-enynes. (7) The structure of the products was confirmed by single-crystal X-ray analysis of representative **3na** (Figure 1).¹⁰

It is interesting and surprising that in contrast to the 2-(phenylethynyl)cyclohex-2-enone (Scheme 1, **3ta**), the reaction of **4a** with *N*-benzylhydroxylamine (**2a**) under the same conditions produced novel β -amino enone **5aa** rather than the expected product (Scheme 2), the structure of which was aslo established by single-crystal X-ray diffraction analysis of **5ab** (Figure 1).¹⁰ Phenyl-bearing electron-rich and electron-withdrawing groups on the alkyne moiety (R^2) could be introduced and have little effect on the reaction.

Figure 1. X-ray crystal structures and line drawings of **3na** (top) and **5ab** (bottom).

When R is H, imines **6a**-**^c** were obtained by further isomerization.

One plausible mechanism that accounts for this $Et₃N$ catalyzed tandem process is proposed (Scheme 3). The regioselective and chemoselective nucelophilic addition of the hydroxylamine 2 via the *N*-atom^{1k} produces 1,2-allenyl ketone intermediate **A**, 8b which undergoes an intramolecular addition with the *O*-atom to give an allylic carboanion **B** under the catalysis of the base. Subsequent protonation

Scheme 2. Tandem Reactions of Enynes **4** and **2**

⁽¹⁰⁾ CCDC 763753 (**3na**) 763754 (**5ab**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

affords product **3**, which undergoes further rearrangement to give the final product **5**. 6c

In summary, we have developed an Et₃N-catalyzed tandem intermolecular and intramolecular nucelophilic addition of *N*-hydroxyamines to electron-dificient 1,3-conjugated enynes, which provides a rapid, efficient, and metal-free approach to multifunctionalized, highly substituted 2,3-dihydroisoxazoles. This method is a complementary approach to those metal or Lewis acid catalyzed 1,3-dipolar cycloadditions of nitrones with alkynes. For those 3-(2-arylethynyl)-4*H*chromen-4-ones, the reaction undergoes further rearrangement to give β -amino enones. Further studies including synthetic applications, the asymmetric catalysis of this reaction, and examination of other binucleophiles are ongoing in this laboratory.

Acknowledgment. Financial support from the National Natural Science Foundation of China (20702015, 20972054) and Shanghai Municipal Committee of Science and Technology (08dj1400101) is greatly appreciated.

Supporting Information Available: Experimental procedures, X-ray data for **3na** and **5ab** (CIF), as well as characterization data of all new products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL100490Y